

GUÍA DOCENTE

Asignatura: Diseño Asistido por Ordenador II

Titulación: Grado en Ingeniería Mecánica Carácter: Obligatoria

Idioma: Castellano Modalidad: Presencial

Créditos: 6 Curso: 2º Semestre: 2º

Profesores/Equipo Docente: D. Miguel Ángel Bravo Hijón y D. Félix Vilaplana Pascual

1. COMPETENCIAS Y RESULTADOS DE APRENDIZAJE

1.1. Competencias

Competencias básicas:

CB1 Competencias Instrumentales son aquellas que tienen una función instrumental. Entre ellas destacamos las siguientes: capacidad de análisis y síntesis, capacidad de organizar y planificar, conocimientos generales básicos, conocimientos de informática, capacidad de gestión de la información, resolución de problemas y toma de decisiones

Competencias Generales.

CG4 Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.

CG5 Conocimientos para la realización de mediciones, cálculos, valoraciones, tasaciones, peritaciones, estudios, informes, planes de labores y otros trabajos análogos.

Competentcias de tecnologia especifica.

CE1Conocimientos y capacidades para aplicar las técnicas de ingeniería gráfica.

CE2 Capacidad de visión espacial y conocimiento de las técnicas de representación gráfica, tanto por métodos tradicionales de geometría métrica y geometría descriptiva, como mediante las aplicaciones de diseño asistido por ordenador.

1.2. Resultados de aprendizaje

Que los estudiantes hayan demostrado poseer y comprender los conocimientos relativos a modelado, simulación aplicaciones, sistemas de diseño asistido por ordenador orientados a la producción, técnicas de diseño tridimensional orientado a la fabricación y obtención de modelos 3D, empleando programas informáticos específicos.

Que los estudiantes tengan la capacidad de reunir los datos necesarios para la resolución de ejercicios de representación gráfica mediante el uso de programas informáticos.

Que los estudiantes puedan transmitir las soluciones adoptadas, así como la metodología empleada en el análisis de los problemas propuestos, utilizando con soltura los conceptos e ideas adquiridos en esta materia, así como de las materias relacionadas con la representación y la geometría de los objetos.

Que hayan desarrollado habilidades de aprendizaje que les permitan emprender las asignaturas posteriores de Expresión Gráfica, Diseño Asistido por Ordenador, Proyectos, así como todas aquellas asignaturas en las que se emplea como complemento de la materia con un alto grado de autonomía.

Los efectos que cabe asociar a la realización por parte de los estudiantes de las actividades formativas anteriormente indicadas son los conocimientos de la materia, la aplicación con criterio los métodos de análisis y técnicas descritos en ella, redactar utilizando un lenguaje preciso y adecuado a la misma, y aprender por sí mismo otros conocimientos relacionados con la materia, que se demuestran:

- En la realización de los exámenes parcial, final y extraordinario en su caso.
- En sus intervenciones orales en clase.
- En las memorias de los trabajos de prácticas obligatorios que el estudiante entrega, utilizando el programa informático CATIA, etc.

2. CONTENIDOS

2.1. Requisitos previos

Ninguno.

2.2. Descripción de los contenidos

- · Técnicas de diseño tridimensional orientado a la fabricación
- · Obtención de modelos 3D

2.3. Contenido detallado

Presentación de la asignatura.

Explicación de la Guía Docente.

1. Presentación y organización de la asignatura

Estructura asignatura.

2. Módulo de diseño de superficies (Generative Shape Design).

Filosofía diseño (hibrido, no hibrido).

Herramientas diseño superficie.

Estructuración para el desarrollo de modelos con superficies

3. Módulo de Ensamblaje. (Assembly Design).

Filosofía de conjuntos aguas arriba y aguas abajo.

Restricciones y grados de libertad.

Gestión de ensamblajes.

Flexibilidad.

Catalogo piezas normalizadas.

Lista de materiales.

Herramientas de ensamblajes.

4. Módulo de aplicaciones sobre ensamblajes (DMU):

Análisis de interferencias y colisiones

Estudios cinemáticos.

Escenas. Realización de planos explosionados.

Anotaciones.

5. Módulo Drafting:

Realización de planos explosionados a partir de escenas.

Planos de piezas.

Planos de conjunto general.

6. Evaluación parcial, final Ordinaria y Extraordinaria.

Pruebas.

2.4. Actividades Dirigidas

Durante el curso se podrán desarrollar algunas de las actividades, prácticas, memorias o proyectos siguientes, u otras de objetivos o naturaleza similares:

Actividad Dirigida 1 (AD1): Modelo virtual de pieza en 3D desarrollado con superficies. Los alumnos, de manera individual, propondrán un objeto para desarrollar su modelo virtual en el entorno de superficies para posteriormente realizar los sólidos necesarios. El trabajo se centrará en una buena parametrización, la utilización de diversidad de superficies, dominio del sistema no hibrido y nivel de detalle del modelo. Además, realizarán por lo menos una imagen fotorrealista del modelo.

Actividad Dirigida 2 (AD2): Modelo virtual de un conjunto en 3D desarrollado de ensamblajes. Los alumnos, de manera individual, propondrán un conjunto de tenga alrededor de 40 piezas. El alumno desarrollará piezas y subconjuntos necesarios para desarrollar su modelo virtual. El trabajo se centrará en un dominio de los grados de libertad y restricciones del conjunto, la utilización de las herramientas y estructuración del conjunto, el uso del catálogo y el nivel, detalle del modelo. Además, realizarán por lo menos una imagen fotorrealista del modelo.

2.5. Actividades Formativas

<u>Clases de teoría y prácticas</u>: (1,8 ECTS). Las clases de teoría utilizan la metodología de Lección Magistral que se desarrollará en el aula informática empleando el cañón de proyección y el programa de ordenador. A lo largo del curso, el profesor irá proponiendo a los alumnos la realización de ejercicios de representación con un programa de DAO así como pequeños proyectos de dificultad creciente, se utiliza entonces la metodología del proyecto para aprender a manejar los programas de DAO.

<u>Tutorías</u>: (0,6 ECTS). Consulta al profesor por parte de los alumnos sobre la materia fuera del horario de clases.

<u>Trabajos de asignatura y estudio individual</u>: (3,6 ECTS) Los alumnos realizarán y entregarán para ser evaluados los trabajos y pequeños proyectos que encargue el profesor. Para facilitarlo, el alumno puede acceder, en un horario amplio, a las salas de ordenadores de acceso libre con todos los programas informáticos de la asignatura, Autocad, 3D Studio Max, CATIA, etc. No obstante se recomienda al alumno la adquisición de ordenador y licencias de estudiante de muy bajo coste o incluso gratuitas de algunos de estos programas. También tendrá disponible en biblioteca en un horario muy amplio todos los libros y manuales de consulta. Con el estudio individual del alumno se completará el ciclo de aprendizaje de las competencias (conocer, saber aplicar con criterio, comunicar de manera eficaz, en este caso visualmente y autoaprendizaje) para pasar a la evaluación.

SISTEMA DE EVALUACIÓN

3.1. Sistema de calificaciones

El sistema de calificaciones finales se expresará numéricamente del siguiente modo:

0 - 4,9 Suspenso (SS)

5,0 - 6,9 Aprobado (AP)

7,0 - 8,9 Notable (NT)

9,0 - 10 Sobresaliente (SB)

La mención de "matrícula de honor" podrá ser otorgada a alumnos que hayan obtenido una calificación igual o superior a 9,0.

3.2. Criterios de evaluación

Convocatoria ordinaria

Sistemas de evaluación	Porcentaje
Presentación de trabajos y proyectos	20%
Prueba parcial	20%
Examen final	60%

Convocatoria extraordinaria

Sistemas de evaluación	Porcentaje
Presentación de trabajos y proyectos	20%
Examen final	80%

3.3. Restricciones

Calificación mínima

Para poder hacer media con las ponderaciones anteriores es necesario obtener al menos una calificación de 5 en la prueba final.

Asistencia

El alumno que, injustificadamente, deje de asistir a más de un 25% de las clases presenciales podrá verse privado del derecho a examinarse en la convocatoria ordinaria.

Normas de escritura

Se prestará especial atención en los trabajos, prácticas y proyectos escritos, así como en los exámenes tanto a la presentación como al contenido, cuidando los aspectos gramaticales y ortográficos. El no cumplimiento de los mínimos aceptables puede ocasionar que se resten puntos en dicho trabajo.

3.4. Advertencia sobre plagio

La Universidad Antonio de Nebrija no tolerará en ningún caso el plagio o copia. Se considerará plagio la reproducción de párrafos a partir de textos de auditoría distinta a la del estudiante (Internet, libros, artículos, trabajos de compañeros...), cuando no se cite la fuente original de la que provienen. El uso de las citas no puede ser indiscriminado. El plagio es un delito.

En caso de detectarse este tipo de prácticas, se considerará Falta Grave y se podrá aplicar la sanción prevista en el Reglamento del Alumno.

3.5 Uso de la inteligencia artificial (IA) generativa en las actividades formativas

La adopción de herramientas de IA en la docencia debe basarse en un enfoque transparente, responsable, ético y seguro, que fomente el desarrollo de competencias digitales en el estudiantado:

- El profesor incluirá en cada actividad formativa si tiene previsto el uso de IA Generativa, con qué objetivo y los requisitos de aplicación de esta.
- Es responsabilidad del estudiante mostrar una conducta transparente, ética y responsable con el uso de IA Generativa, y adaptarse a los criterios de aplicación dictados por el profesor en cada actividad.
- La detección de cualquier conducta fraudulenta con respecto al uso de IA Generativa, no atendiendo a las indicaciones del profesorado, aplicará las sanciones previstas en el Reglamento Disciplinario.

4. BIBLIOGRAFÍA

Bibliografía básica

Torrecilla, E. (2013). *El gran libro de CATIA, 2º Edición*. Barcelona, España: Marcombo ediciones técnicas.

Bibliografía recomendada

Félez, J. (2008) Ingeniería gráfica y diseño. : Madrid, España: Síntesis.

Otros recursos

www.schroff.com www.3ds.com www.catia.com